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Abstract

This paper presents a theoretical model for the response of a two-dimensional, thermally driven, shape memory alloy
(SMA)/elastomer actuator. The actuator is assumed to be constructed from a thin layer of SMA bonded to a layer of
elastomer. The proposed device is considered to undergo small displacements and small strains. The governing
equations are developed utilizing the classical laminated plate theory, energy balance equations, and a two-dimensional
transition model of the SMA layer. A finite element model is developed to solve the nonlinear system of equations.
Parametric studies are conducted to demonstrate the effects of the elastomer thickness, thermal conductivity, input
energy, and heat sink strength on the overall time response of the SMA/elastomer actuator. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The focus of this study is on the responses of a proposed shape memory alloy (SMA)/elastomer actuator.
The actuator is assumed to be constructed from a thin layer of SMA bonded to a matrix of elastomer. The
present work is the extension of the study by Wu et al. (1996), in which the temperature—stress—strain and
time responses of a SMA/elastomer beam were investigated by using a shear-lag stress model.

The SMA as an actuator has been widely studied in recent years. For example, Rogers and Baker (1990)
demonstrated an application of SMA composite for active structural vibration control of a clamped—
clamped graphite/epoxy beam with embedded SMA actuators at the neutral axis. The application of the
SMA reinforced composite in structural acoustic radiation control was investigated by Saunders et al.
(1991). Baz and Tampe (1989) have shown that discrete SMA actuators can be used to control buckling of
flexible structures. Lagoudas and Tadjbakhsh (1993) studied a generalized theory to model the resultant
forces and moments for a flexible rod with an embedded line actuator.

Models to simulate the martensitic transformation were developed by Tanaka (1982), and Liang and
Rogers (1990). Also, a one-dimensional thermo-mechanical constitutive relation for SMAs was developed
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Nomenclature

A actuator length

As austenite start temperature

Ay austenite finish temperature

B actuator width

¢ specific heat

C thermal capacity

E, Young’s modulus of the SMA

E. Young’s modulus of the elastomer
h actuator thickness

kn thermal conductivity of the SMA
ke thermal conductivity of the elastomer
M martensite start temperature

M; martensite finish temperature

P input power

q transverse load

qx heat flux in x direction

gy heat flux in y direction

On heat of transition (latent heat)

O shear stress resultant on xz plane
0, shear stress resultant on yz plane
R dimensionless thermal conductivity
Ruma dimensionless heat of transition
Rp dimensionless input power

S heat sink strength

t time

ty SMA layer thickness

T temperature

To heat sink temperature

u in-plane axial displacement

v in-plane transverse displacement
w out-of-plane deflection

w dimensionless out-of-plane deflection
X coordinate

y coordinate

X dimensionless coordinate

Y dimensionless coordinate

() dimensionless transverse load

0, rotation in xz plane

0, rotation in yz plane

(] dimensionless temperature

1Y
Oy

density

normal stress in x direction
oy normal stress in y direction
T dimensionless time
Tyy shear stress in xy plane

14 martensite fraction
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by Rogers et al. (1989). In order to simulate the thermal-stress behavior of a SMA in a two-dimensional
geometry, Ikuta and Shimizu (1993) introduced the so-called ““variable sublayer model.”

In this study, a two-dimensional nonlinear transient analysis of a thermally driven SMA/elastomer
actuator is presented. The classical laminated plate theory is utilized. The energy balance equation is de-
veloped to model the thermal behavior of the SMA layer. The nonlinear constitutive equations for the
SMA layer is obtained by combining the actuator’s constitutive equations with the variable sublayer model
for the two-dimensional martensitic transformation. The governing system of equations is solved by using a
finite element method.

2. Shape memory alloy/elastomer actuator modeling

Let us consider the SMA/elastomer actuator shown in Fig. 1a and b, in which the xy plane coincides with
the midplane. The actuator is composed of two isotropic layers, a SMA layer with thickness, #,, and an
elastomer layer with thickness, (2 — ¢,). The elastomer layer is bonded to a heat sink maintained at tem-
perature Ty. It is assumed that the two layers are continuously bonded together. Simply supported
boundary conditions at all four edges of the actuator are considered. The actuator is subjected to a uni-
formly distributed load, g.

Uniform Load, q

- 1
th, | Y

N

(c)

Austenite /

o)

, 2 Asite

1

Epre

Fig. 1. (a) The geometry configuration of the proposed actuator. (b) The SMA/elastomer under external uniform load and simply
supported boundary conditions at all four edges. (c) Modeling of the SMA layer stress—strain relation in austenite and martensite
phases.
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Initially, the SMA layer is pre-strained in the martensitic phase before the transverse load is applied. The
stress—strain state in the SMA is indicated schematically as ““state 1’ in Fig. 1c. Due to the applied load, an
additional elastic strain is built in the SMA layer, which is indicated as “state 2”. When heated, by an
electric current, above the austenite start temperature, 4, the SMA transforms into the austenitic phase,
attempting to recover both the elastic strain and the elastic pre-strain. Since the focus of this work is on the
transient time response of the SMA layer, small deformation is considered. Hence, the recovered strain is
kept within the linear elastic strain range (i.e., “‘state 3’ indicated in Fig. 1c). This is the limit for the re-
covery strain. As a result of strain recovery process, the deflection of the actuator is reduced. After the
electric current is reduced or removed, the SMA layer cools down (via conduction through the elastomer to
the heat sink) to the martensite phase. When the SMA reaches the martensite phase, the stress—strain state
of the SMA returns to “‘state 2.”

The equilibrium equations for a general state of stress in the absence of body force are

0o, 01, Oty

= 1
e (12)
0o, 01, 01,
==y -0 1b
dy Ox 0Oz ’ (1b)
Go T Ty (Ic)

Ty
Based on the microscopic observation of SMA behavior, in which the martensite and austenite phases
are blended uniformly in the bulk metal during the martensite phase transformation, Ikuta and Shimizu

(1993) proposed the so-called “variable sublayer model” to formulate the two-dimensional in-plane stresses
in the SMA layer during the phase transformation, as follows:

0.(&) = (1 = &)aua + Cowm, (2a)
0,(&) = (1 = &)aya + Eoym, (2b)
Txy(é) = (1 - i)TxyA + irxyM7 (20)

where ¢ is the martensite fraction, g4, 0,4 and 7,,5 are the in-plane stresses of the SMA layer in the
austenite phase, and 6., 6, and 1, are the in-plane stresses of the SMA layer in the martensite phase. In
this study, it is assumed that the actuator can be modeled as a thin plate with the midplane of the plate
remaining unstrained under bending; therefore, from the classical plate theory

u(x,y,z) = _Zex(xvy)a (321)
U(x,y,z) = _20y<x7y)a <3b)
w(x,y,z) = W('xay)a (3C)

where u, v and w are the components of displacement at x, y and z directions, respectively, and 0, and 0, are
the rotations in xz and yz planes, respectively. Since the recovered strain is considered to be within the
range of the linear elastic strain, one has

20, 20,
& = —z2— g = —z

ox’
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00, 00 ow ow
yxy__z( ay+a—;)7 Yz = <6 +a ) y)z__<0}’+5>' (4b)

In addition, the following elastic stress—strain relations can be applied to both the SMA and the elas-
tomer layers:

E
1= (&) + vey), (5a)

o, = 5 (e + vey), o, =

1—v
TW = nyya Tz = Gsz? T)Z = Gy)/z (Sb)

The constitutive equations for the SMA layer can be obtained by combining Egs. (2), (4) and (5), and the
constitutive equation for the elastomer layer is developed by combining Egs. (4) and (5).

The system of equations governing the bending of the actuator can be developed by considering a
differential element of the SMA/elastomer plate subject to a uniformly distributed load per unit area, q.
Multiplying Egs. (1a) and (1b) by zdz, and integrating Eqgs. (1a)-(1c) across each layer gives

I Oo 1 I oo 1 by Oo 2 hy ot 2
—dez—|—/ izdz—&—/ —dez—|—/ —2dz -0, =0, 6a
f| e [ e [ e [ g (%)
b Oo 1 I ot )1 b 0o 2 b ot 2
2 zdz+/ s zder/ —}zder/ *zdz— Q, =0, 6b
f| e [ e [ e [ T2t (68)
00, 00,
— 0, 6
o + o +q= (6¢)

where o, and t,,, are the normal and shear stresses in the elastomer layer, respectively, o, and t,,, are the
normal and shear stresses in the SMA layer, respectively, Q. and Q, are the shear resultants and are given
by

hy hy
Qx - / Tyzl dZ + / Txz2 dZ, (73)
ho n
hy hy
Qy = / Tyz1 dz + / Tyz2 dz. (7b)
hy hy

By combining Eqgs. (2) and Egs. (4)—(7), one obtains the following system of equations in dimensionless
form for bending of the actuator:

0 oaw 0 ow
0 (00, a0, 00, a0, 0 (00, a0,
D&(GXJF eay>+D3 6Y(6Y+ naX)+(DA+DMA€) <6X+ ay)
oé a0, o¢ a0, o (00, a0,
+DMA6X<6X+U 6Y> +D33MA6Y<6Y+5> (D33a +D33MA5) <6Y+ﬁ>

ow
—A44(0 +67> =0, (8b)
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Table 1
Dimensionless stiffnesses
= (hy — h})/(3(1 = v})h5) Dsy = (hy — )/ (3(1 + ve) )
Dy = (hy — h)EA/(3(1 — )R Ee) Dya = (g — h})(Em — Ea)/(3(1 = 0)) I Ee)
Dssa = (B} — B3)EA/(3(1 + v2)I3E,) Dysva = (hi — h3)(Ext — Ea)/(3(1 + va)3Ee)
A =350, Gl — hy 48— 1) ] A =350, Gl — i — 4~ 1) )
D% (2;9( + eg@yy) +D%366Y (ag + n?&) +(Da + Dwad) 7 ¢ (239( + e?;;) + Dua
X—é(%—i—vna—[)’v) + Disma = oc (% a—()y>+(Dz3A+D3%MAf) ¢ (60 +6_()v>
X \ oX oY oY \ oy oXx oY oY

(6 + Z)VD =0, (8¢c)

where the coefficients D, D33, Da, Dva, D3za, Disva, Aas, Ass are defined in Table 1.
Now, consider a differential element of the SMA layer. If the heat loss on the top surface of the SMA
layer is neglected, constructing the energy balance on the SMA leads to
o¢ ’T T

or
G Gt_Qng_kn@_kGZ—i—K(T Ty) =P, 9)

where

1. C,(0T/0¢) is the change in the internal energy of the SMA layer. Here, C, = p, ¢, where p, is the density
and c is the specific heat of the SMA.

2. —0,(0&/0r) is the energy contributed to the phase transformation of the SMA. Here, O, = p,¢n, Where
on 18 the density and ¢, is the heat of transition of the SMA.

3. —ka (0T /Ox?) — kn(0*T/0y?) is the heat conduction in x and y directions through the SMA layer and k, is
the thermal conductivity of the SMA.

4. K.(T — Tp) is the quasi-steady model for heat lost by conduction through the elastomer layer. Here,
K. =k/[t.(h — t,)], where k is the thermal conductivity of the elastomer. This model was verified in a
previous publication (Wirtz et al., 1995).

5. P is the input power generated by the electric current passed through the SMA layer in the heating pro-
cess. P is zero if Eq. (9) is applied to the cooling process.

Eq. (9) may be written in dimensionless form as

0 o Fe ¥
ot MAar ax2 or?

where @ is the nondimensional temperature of the SMA, 7, the dimensionless time, Rya, the dimensionless
heat of transition of the SMA, R;, the dimensionless thermal conductivity of the elastomer, S, the heat sink
strength which characterizes the heat conduction loss from the SMA through the elastomer to the heat sink,
and Rp, the dimensionless input power to the SMA layer. The dimensionless symbols are defined in Table 2.

A linear model, providing a one-dimensional relation between the martensite fraction with temperature
and stress during the phase transformation, was proposed and experimentally verified by Lin and Rogers
(1991). The model for the heating and cooling transition processes is in the following forms respectively
(Lin and Rogers, 1991):

+RO+S—Rp =0, (10)
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Table 2
Dimensionless parameters
Quantity M — A, heating A — M, cooling
Time, © ket /2 Cy kat/H*Cy
Temperature, © (T — My)/(Ar — Ay) (T — My)/(Ms — My)
Heat of transition, Rya Gn/Cn(A4r — 4s) Gn/Co(Ms — M)
Power ratio, Rp Ph? [k, (Ap — A)
Heat sink strength, S (My — Ty)/(Ms — M) (My — Ty) /(Ms — M)
Applied load, @ q/E.
Deflection, W w/h w/h
Coordinate, X x/h x/h
Coordinate, Y v/h v/h
Conductivity, R, K. /K, K. /K,
T — A, o
f=1- + (11)
Ap — Ay Ca(dr — 4)’
T — Mf g
E=1- + ) (12)
M — My~ Cwm(Ms — M)

where C, and Cy are the material constants which indicate the influence of the stress on the transformation
temperatures, 4; and Ay, respectively. M; and M; are the start and finish temperature of the phase
transformation from austenite to martensite, respectively, and o is the magnitude of stress in the SMA.
Since in this study, a thin, symmetric SMA layer with symmetric loading and boundary conditions is
considered, Egs. (11) and (12) are extended to the two-dimensional case, and ¢ is assumed to be the hy-
drostatic stress. For a general case, a two-dimensional constitutive model may be employed.

By combining Egs. (2), (4), and (5), Egs. (11) and (12) can be rewritten in a generic form for both the
heating and cooling transition processes as

(h—1)

= O e — A — )

(01— 98+ 8l 52+ 57 ) (13)

Egs. (82)—(8c), (10) and (13) form a system of equations governing the bending problem of the proposed
SMA/elastomer actuator subject to both thermal and mechanical loads, where W, 0., 0,, © and ¢ are in-
dependent variables.

3. Finite element formulation

A finite element model for the system of Eqgs. (8), (10) and (13) is derived by constructing the variational
formulation for each of these equations. Since the system of equations is nonlinear, the coefficient matrix
[K] in the finite element formulation depends on the primary variables {#,0,,0,,0,}. As a result, an
iterative solution procedure must be employed. In this study, an alternative procedure for solving Egs. (8),
(10) and (13) is developed. Instead of solving Egs. (8), (10) and (13) simultaneously, Egs. (8) and (10) are
decoupled and solved separately for W, 0., 0,, and O, by estimating an initial value for & at each time step.
Then, Eq. (13) is used to test if the calculated W, 0,, 0,, © and the estimated ¢ are the true solutions. If not,
Eqgs. (8) and (10) are resolved for W, 0., 0,, and @ with an improved estimation of £. This iteration is
continued until the solution is obtained. The advantage of the proposed alternative procedure over the
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conventional procedure is that the number of degrees of freedom per node of a finite element is reduced by

one, and the number of iteration required for convergence is significantly less.

The variational formulation of Eqgs. (8) and (10) over a typical element €° is obtained by multiplying

each equation by a weight function N; (i = 1, 2, 3, 4) and integrating the results by parts:

/ Ni{LHS of Eq. (8a)}dxdy =0,
Qe
N>{LHS of Eq. (8b)}dxdy =0,
Qe

N;3{LHS of Eq. (8¢)}dxdy =0,
QC

/ Ny{LHS of Eq. (10)} dxdy = 0.
Qe

Substituting Egs. (8) and (10) into Eq. (14) leads to

ON| ow ow
[ {anS (0455 ) #4500+ 5y ) faxar

ow ow
/ N3¢dXdY+j£ N l:A44(0 +6X>nx+A55(0y+W>ny:|dsv

N, (S oN,
/QC { [(D + Da +DMA§) — Dwma @XNz} 6X [(Dve + Dpv, +DMAUné)ﬁ

o0& a0, ON, 0
— Dyavy 6XN2] 67 + |:(D33 + Ds3a + Dasmal) —— oy — D33ma 6)(:;N2} 6Y |:(D33 + Ds3a

ON, 0 ow
+D3%MA§) — D3zma 6}6’]\4 % >+ AN, (9 + )}dXdY

—/NDaO—i-a() «+ (Da+D 6)60+ %,
= )P\ ax T oy AT EMA oy )"

o0, 00,
+ (D33 +D33MA5)(6X + aX)”y] ds,

00, 6()
E)Y ox

ON:

N o¢ 3
N3:| oY + |:(Dve + DAUn + DMAUné) W

/e { [(D+DA +DMA5) — Dvia =~ ay

00,
oxX

ON- 0
+ [(D33 + D33p + D33MA§) —3 — D33ma 6)5(
ON; o¢

ow
+ D33MA§) — D33ma = N3} + AssN3 <9 + = ) }dXdY

0
— Dpady aé ] Ns} % -+ {(Dn + D33

x| oy oY
20, a0, 20, a0, 20, a0,
_/reN3[D(6Y+ eax) y + (DAJFDMA@( + “ax)””LD”(aY aX)”x

00, 0,
+ (D33 + D3amaé) ( % + &>nx} ds,

(14a)

(14b)

(14c¢)

(14d)

(15b)

(15¢)
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00 ON, 00 ON4 00 o¢
/e {N4 e + Ry — X X +Ri— 7 7 + N,O — N4RMA6 + Ny(S — Rp)}dXdY
00 00
_f;eN‘tRk(aX ny ayny> ds. (ISd)

From the above variational formulations, Eq. (15), it can be seen that the specification of the expressions
in the square brackets of the boundary terms constitute the natural boundary conditions, and the speci-
fications of W, 0,, 0, and @ constitute the essential boundary conditions. The terms in the natural boundary
conditions can be identified with the moment, shear force resultants and heat flux:

M. — D(@O a0, > (DAJrDMAf)(aB T a0, >

oX aY oY
00, 00, 00, a0,
My:D<aY+ eaX>+(DA+DMA€)< + naX)
00, 00, o0, 00,
16
M,, D33<6Y 6X> (D33+D33MA5)<6Y+6X) (16)
ow ow
Qx—A44<9 +&) Qy—A55(9 +W>
I T
qx = kaXa q_v_ kaY~

To develop a finite element model for Eq. (15), W, 0,, 0,, © and £ may be approximated over a two-
dimensional, four-node, linear element by the following interpolation functions:

4

W:i¢,‘VV[, Hx :Z Xis i yta o= Z¢ @la é Z(p ézv (17)
i=1 i=1

i=1

where @, (i = 1, 2, 3, 4) are the linear interpolation functions of the four-node element in two dimensions.
Substituting Eq. (16) into Eq. (15) results in
K] KR KET] (A} {rF'}
K] K2 [KZ] ] A0 o= 4 {F°} ¢, (18)
K] [KP {0,} {F}

2+ e+ (@1 S - ), 09)
where

= [ (2

K} = ( )dXdY

0P;
13 _ )
Kij —/Q <A55 oY 1) dXdY,
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oa,
K2 = / (A44 — j> dxdy,

oo
Kéz = / { <D —+ DA + DMAZdjkE/c) MAZ k ]
Qe

0P
+ (Dzz + Dyza + D33MAZ¢k§k> 33MAZ ke -1—1‘144‘15 P, }dXdYa
0P; 6@
Ki2j3 = / { (DUe + Davy —&-DMAz)nZ(Pkfk) DMAU“Z o fk
Qe
0P, @
+ || D33 + D3za + DzaMAZ@kfk D33MAZ &P dxdy,

d
31
K} _/Q (A55<I> aY)d)(d)/

4 4
0P; 0P
(DUC + Davy + DMADnZ¢kék> oy Dyiatn ¥ ——= &
=1 -

0P Gl
<D33 + Ds3a + D33MAZ‘Dk5k> D33MAZ e 1 3 } dxdy,

33
k- {
Qc

(D + Dp + DMAZ(DA fk) DMAZ a¢k 1

6(15

<D33 + Ds3a + D33MAZ(1§kfk> - D33MAZ 6<I>k
F'= / ®,0dxdY + 7{ ®,(Qun, + Oyn,)ds
Q° re
B2 = § 0o, + My ds,
e
F = ﬁ 0 (Mgn 4 Myn,) ds.

cl = / &,®;dX dY,
Qe

00, 0B;  OPD; 0D,
2 — R R D, Y
< /<k6X o Ryt >dXd’

oy TAsP®, }dXdY,
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3 = _/ Rya®;®;dX dY,
Qe

iy

Fi4 — /Qe Rp®;®;dX dY + jli R ®i(q.n, + qyn,)ds. (21)

Eq. (19) is a set of time-dependent ordinary differential equations which must be further approximated to
obtain a set of algebraic equations. If {V} represents a column matrix of the undetermined parameters, the

weighted average of the time derivative of {V'} at two consecutive time steps n and n + 1 can be expressed
by

() ol

Athrl

where o is assumed to be equal to 0.5. By substituting Eq. (22) into Eq. (19), one has
(Ko} = {F}, (23)

where

0P; 09, 09; 09,
K4 = PP, At R Ry D, P Y
ij /Q |: +a l( kaX 6X+ B2 aY+ ):|dXd s

00, 00; b, O,
F= At &, &P, + (1 —a)At( R O, P, Y
]{RP t dXdY+/Z;{/Q[,,+( )t<kaXaX+R 5 ar ﬂd)(d }@

+i{/ Rua®i®; dXdY}(’"“ &).

(24)

It is observed that Eqgs. (18) and (23) can be decoupled, if & is known. Since the solution to Egs. (18) and
(23) is a time-marching initial-value problem, a good estimation of ¢ can be made based on the previous
value at each time step. Therefore, Eq. (18) is solved for W, 0., 0,, whereas Eq. (23) is solved for ©. The
procedure for solving Egs. (18) and (23) in step-by-step fashion is described as follows:

1. Select an initial value for @° and & and solve Eq. (18) for w°, ¢°, 0O

2. Calculate new time 7, = 17, + At and estimate the martensite fractidn g’”*tl at 7, by the free-response
model 1" =1 — @' where @"" is obtained by solving Eq. (19) with term 3¢/t replaced by —06 /dx.

3. Solve Eq. (18) for w"+!, ¢!, 0”“ and Eq. (23) for @', based on W", ", 0;, @" and et

. Calculate &' by Eq. (13) using W+, 0, 0”+1 O™ and &'

5. Check convergence by testing if (f"“ — 5’;; 1) 1s satisfied with a convergence criterion. If the convergence

criterion is satisfied, repeat steps (2)—(5) with a time increment. If the convergence criterion is not

satisfied, calculate the new estimated ¢! by using the relaxation method &' = &' 4 (&' — iy

and repeat steps (3) and (4) until the convergence criterion is satisfied.

I

4. Results and discussion

To verify the finite element solution, two special cases were compared with the published closed-form
solutions. Test case 1 is bending of a simply supported, isotropic plate under uniform load ¢, = 100 Ib/in.>.
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The geometric dimensions of the plate are as follows: 4 = 10 in., B =10 in., 2~ = 0.05 in. The material
properties of the plate are as follows: Young’s modulus, £ = 10° Ib/in.> and Poisson’s ratio, v = 0.3. By
setting & = 1, and the Young’s modulus and Poisson’s ratio of both the SMA and the elastomer layers to
10% 1b/in.2, and 0.3, respectively, Eq. (18) is solved for the dimensionless center deflection (W* = wEh? /gA4*)
of the plate for three different finite element meshes of 2 x 2, 3 x 3 and 4 x 4 linear elements. The results
listed below is the comparison between the dimensionless deflection W* obtained by the finite element and
closed-form solutions:

Finite element method Closed-form (Timoshenko and
Woinowsky-Krieger, 1959)

2x2 3x3 4 x4 Classical plate theory

W = 43.37 w* = 4397 W =44.16 W* = 44.34

Test case 2 is the stress-free response of the plate for the complete heating and cooling phase transitions.
With Rp = 3,8 = 1.5 and Rya = 1.4, the time response solved by the finite element formulation, Eq. (23), is
the same as the closed-form solution of the stress-free response presented in a previous publication (Wirtz
et al., 1993):

Heating response Cooling response
FEM Closed-form FEM Closed-form
1=0.78 7=0.78 7=0.63 7 =0.63

The thermal and mechanical responses of the SMA/elastomer actuator are obtained by solving Eqgs. (18)
and (23). Consider the plate consisting of the SMA layer of 55-Nitinol and the elastomer layer of Dow
Corning SYLGARD. The material properties of the SMA and elastomer are listed in Table 3. The
boundary conditions of the plate are assumed to be of the simply supported and thermally insulated types
on all four edges.

A 4 x 4 mesh of linear rectangular elements is employed. Also, the Crank—Nicolson method (i.e., « = 0.5
in Eq. (22)) is used. Although the Crank—Nicolson method is unconditionally stable, a At is computed
according to the following formula to assure a reasonable accuracy:

2

At <
h lmin ’

(25)

where Ay, is the minimum eigenvalue of the operator —V?2. For this study, the value of At is selected to be
0.05.

Table 3

Thermophysical properties of 55-Nitinol and Dow Corning SYLGARD
Property Units 55-Nitinol SYLGARD
Density, p kg/m? 6500 1050
Specific heat, ¢ J/kge°C 883 1422
Thermal conductivity, k& W/m°C 17 0.146
Heat of transition, ¢, J/Kg 12 600 N/A
Material constant, Cx MPa/°C 10.3 N/A

Material constant, Cy MPa/°C 10.3 N/A
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Fig. 2. The effect of the elastomer Young’s modulus on the response and the maximum deflection.

The effect of elastomer layer stiffness on the center deflection of the plate for the complete heating—
cooling cycle is presented in Fig. 2. The deflection remains unchanged while there is no phase trans-
formation. The deflection increases during the phase transformation from martensite to austenite and
decreases during the phase transformation from austenite to martensite. The effect on the center deflection
is significant for the elastomer layer with smaller stiffnesses. The response time of a complete cycle is not
significantly affected by the elastomer’s stiffness.

Fig. 3 shows the dimensionless temperature and deflection responses of the actuator. The results are
shown for three different dimensionless heating rates, Rp. The overall time response decreases as the heating
rate increases. It can be seen that the time response changes in the heating process only, due to the heating
rate increase.

Fig. 4 demonstrates the center deflection response of the actuator for three different dimensionless
thermal conductivities, Ry, of the elastomer. It is shown that when the elastomer’s thermal conductivity
increases, the time response of the plate is decelerated during the heating response and is accelerated during
the cooling process. However, the overall time response of the actuator increases, if the elastomer’s thermal
conductivity increases within a certain range. If the thermal conductivity exceeds a certain limit, increasing
the elastomer’s thermal conductivity has the opposite effect. This is demonstrated in Fig. 5.

The effect of dimensionless thermal conductivity, Ry, of the elastomer on the overall time response of the
actuator is shown in Fig. 5. As it can be seen, there is a critical value for the thermal conductivity. In-
creasing the thermal conductivity will accelerate the overall time response of the actuator if the thermal
conductivity is less than the critical value. The overall time response decelerates if the thermal conductivity
exceeds the critical value. However, it is also found that the critical value is increased by increasing the
heating rate.

Fig. 6 shows the effect of dimensionless thermal conductivity, R;, of the elastomer on the overall time
response of the plate for different heat sink strengths, S. It is shown that the response of the actuator is
decreased and the critical value of the thermal conductivity is shifted to smaller values as the heat sink
strength increases.
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Fig. 3. The effect of the input heating on the response.
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Fig. 5. The actuator response versus the elastomer conductance under different Rp.
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Fig. 6. The actuator response versus the elastomer conductance under different S.

Figs. 7 and 8 show the overall time response of the actuator as a function of the elastomer layer thickness
(h — t,) for different heat sink strengths, S, and different heating rates, Rp, respectively. The overall time
response is faster if the elastomer layer thickness is smaller. Fig. 7 also shows that there is a critical value for
the heat sink strength (R = 50), beyond which there is a minimal change on the actuator’s time response.
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Fig. 7. The effect of the elastomer-layer thickness on the actuator response under different Rp.
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Fig. 8. The effect of the elastomer-layer thickness on the actuator response under different S.

Increasing the heat sink strength will accelerate the overall time response of the actuator more, if the heat
sink strength is below the critical point, otherwise it will have the opposite effect on the overall response of
the actuator. Fig. 8 shows that the response of the SMA/elastomer actuator is accelerated more by in-
creasing the heating rate. However, the response time of the actuator is converged to a limit, if the heating
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rate increases. This is because increasing the heating rate only affects the time response for the heating
process.

5. Summary and conclusions

A nonlinear model for the displacement and time response of a thermally driven SMA/elastomer ac-
tuator is developed. The proposed two-dimensional actuator consists of a thin SMA layer perfectly bonded
to an elastomer layer. The theoretical modeling of the actuator is based on the classical plate theory and the
variable sublayer model for the two-dimensional martensitic transformation. A finite element formulation
has been developed to solve the nonlinear model.

The numerical results demonstrated that the input heating, heat sink, the thermal conductivity and the
thickness of the elastomer layer play important roles in controlling the time response of the SM A/elastomer
actuator. In general, increasing the input heating rate accelerates the response of the actuator for the
heating process, whereas increasing the heat sink strength and thermal conductivity of the elastomer ac-
celerates the response for the cooling process. Since increasing the heat sink and the thermal conductivity of
the elastomer have the inverse effect on the response of the actuator during the heating process, there is a
critical point for increasing both the heat sink and the thermal conductivity of the elastomer. It is also
demonstrated that increasing the heat sink and the thermal conductivity of the elastomer generally ac-
celerates the overall response of the actuator as long as the critical point is not exceeded. It is found that
decreasing the thickness of the elastomer and increasing the input power accelerate the response of the
SMA/elastomer actuator.
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